Este sitio web utiliza cookies propias y de terceros para optimizar tu navegación, adaptarse a tus preferencias y realizar labores analíticas. Al continuar navegando aceptas nuestra Política de Cookies.

Aceptar

iñigo lopez gazpio

img

iñigo lopez gazpio

Categoría:
Doctor/a Ayudante

Currently, I'm working as a professor at University of Deusto teaching engineers to get the most out of data. I'm also interested in machine learning (ML), deep learning (DL), reinforcement learning (RL), Python data analysis (numpy stack for rapid analysis), Arduino sketch and builds (sensors and actuators in the robotics field), the free software (GNU/Linux) and the maker philosophy for fast industry prototyping (3D modeling in blender and 3D printing).I have a Ph.d in the field of natural language processing (NLP) at the University of theBasque Country (UPV/EHU - IXA research group), and a masters degree in natural language processing (NLP). In the recent past I've been working with machine learning and deep learning models in python under distinct deep learning frameworks to learn patterns from data. My research topic is mainly word, phrase and sentence similarity, which aims to build Artificial Intelligence models able to grade input pairs and output similarity values for the given inputs.I've also taught undergraduate and graduate students in the Object Oriented Programming paradigm for several year in the University of the Basque Country (UPV/EHU), and Arduino basic builds (sensors and actuators) in the Udako Euskal Unibertsitatea (UEU).Some of the technologies I've used and enjoy are: Python and the numpy stack (numpy, scipy, pandas, matplotlib, scikit-learn), Perl, C, C , Java, Arduino, HTML5, CSS3, PHP, MySQL, SQLite, MongoDB, Git and more.

Despacho: Campus de San Sebastián Edificio P. Altuna planta 5 ()

 Atención Presencial EstudiantesLugar
Lunes12:00 - 13:00Edif Aulario 5
Martes9:00 - 10:00Edif Aulario 5
Miércoles12:30 - 13:30Edif. Aulario 5
Lunes
Atención Presencial Estudiantes
12:00 - 13:00
Lugar
Edif Aulario 5
Martes
Atención Presencial Estudiantes
9:00 - 10:00
Lugar
Edif Aulario 5
Miércoles
Atención Presencial Estudiantes
12:30 - 13:30
Lugar
Edif. Aulario 5